To get around the problem of damaging 10,000 neurons just to connect with 1,000, Biohybrid is experimenting with an approach that makes donor neurons a part of the implant itself - potentially allowing for dramatically better connection scaling.

      • Neuromancer49@midwest.social
        link
        fedilink
        English
        arrow-up
        1
        ·
        13 days ago

        Fantastic question, like Will_a said, I’ve never seen a device designed for input to the brain like this.

        In this particular example, if someone were to compromise the device, even though it’s not able to “fry” their brain with direct electricity, they could overload the input neurons with a ton of stimulus. This would likely break the device because the input neurons would die, and it could possibly cause the user to have a seizure depending on how connected the input was to the users brain.

        That does bring to mind devices like the one developed by Battelle, where the device reads brain activity and then outputs to a sleeve or cuff designed to stimulate muscles. The goal of the device is to act as a prosthesis for people with spinal cord injuries. I imagine that device was not connected to the internet in any way, but worst case scenario and a hacker compromises the device, they could cause someone’s muscle to sieze up.

        • thefartographer@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          13 days ago

          they could overload the input neurons with a ton of stimulus

          “Do you smell smoke??”

          “Yes, I just got a text message. Phone calls taste like bananas”

      • will_a113@lemmy.mlOP
        link
        fedilink
        English
        arrow-up
        1
        ·
        13 days ago

        This is an interesting question. Just about every announcement I’ve seen so far has been for a read-only interface (for example, a paralyzed person envisioning moving his hand to make a robot arm move), but this Biohybrid one specifically mentions that they applied a signal (light) to the sensor to see if the mice would respond biologically.

    • Alk@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      0
      ·
      13 days ago

      Do you see these eventually evolving into more a practical medical purpose or convenience/commodity purpose or both?

      • Neuromancer49@midwest.social
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        13 days ago

        The most practical medical purpose I’ve seen is as a prosthetic implant for people with brain/spinal cord damage. Battelle in Ohio developed a very successful implant and has since received DARPA funding: https://www.battelle.org/insights/newsroom/press-release-details/battelle-led-team-wins-darpa-award-to-develop-injectable-bi-directional-brain-computer-interface. I think that article over-sells the product a little bit.

        The biggest obstacle to invasive brain-computer implants like this one is their longevity. Inevitably, any metal electrode implanted in the brain gets rejected by the immune system of the brain. It’s a well-studied process where a glial scar forms, neurons move away from the implant, and the overall signal of the device decreases. We need advances in biocompatibility before this really becomes revolutionary.

        ETA: This device avoids putting metal in the brain and instead the device sends axons into the brain. Certainly a novel approach which runs into different issues. The new neurons need to be accepted by the brain, and they need to be kept alive by the device.

        If they move the cell bodies into the brain and then had the device house axons and dendrites (neuron input and output), they could maybe let the brain keep the device alive. But that is a much more difficult installation procedure